
3D Computer Vision Project Formulas

March 18, 2024

1 ESTIMATION OF ESSENTIAL MATRIX

Essential Matrix is comprised of the translation and Rotation as shown below

E = [t]×R (1.1)

Essential matrix can be estimated from the 2D-2D correpondence between two frames,
given the camera calibration matrix K as

XT
2 EX1 = 0 (1.2)

Algorithm 1 Calculate Essential Matrix

1: A← zeros(len(points1), 9)
2: for i = 1 to len(points1) do
3: (x, y, )← points1[i]
4: (x′, y′, )← points2[i]
5: A[i]← [x′ × x, x′ × y, x′, y′ × x, y′ × y, y′, x, y, 1]
6: end for
7: U, S, V T ← svd(A)
8: E ← V T [−1].reshape(3, 3)
9: U, S, V T ← svd(E)
10: E ← U × diag[1, 1, 0]× V T

11: E ← E/norm(E)
12: return E

1.1 RANSAC Algorithm for Essential matrix estimation

This algorithm is also used for estimating the feature matches between two images.

1



Algorithm 2 RANSAC for Essential Matrix Estimation

1: best E← None
2: best inliers← []
3: for iter = 1, 2, . . . , kmax do
4: p1subset

, p2subset
← RandomSubset(p1, p2, 8)

5: E← CalculateEssentialMatrix(p1subset
, p2subset

)
6: inliers← []
7: for i = 1 to len(p1) do
8: ϵ←

∣∣pT
2i
· Eestimate · p1i

∣∣
9: if ϵ < τ then
10: inliers.append(i)
11: end if
12: end for
13: if len(inliers) ≥ T then
14: all inliers← inliers
15: updated E← CalculateEssentialMatrix([p1i

in all inliers], [p2i
in all inliers])

16: inliers← []
17: for i = 1 to len(p1) do
18: ϵ←

∣∣pT
2i
· updated E · p1i

∣∣
19: if ϵ < τ then
20: inliers.append(i)
21: end if
22: end for
23: if len(inliers) > len(best inliers) then
24: best E← updated E
25: best inliers← inliers
26: end if
27: end if
28: end for
29: return best E,best inliers

2



2 DECOMPOSITION OF ESSENTIAL MATRIX

In this method we use the concept that Essential Matrix incorporates the translation
and rotation matrix as shown in 1.1.

If we consider Initial camera position to be at the origin of world coordinate system
then the image of origin in the second camera will be Epipole. Since the translation
vector is along the baseline, the epipole correspond to translation. we know,[

x
1

]
= P

[
X
1

]
Considering normalised points, then t will be epipole in second image because,

or,

[
x
1

]
= [R |t]


0
0
0
1

 = t

Hence using the property of essential matrix and epipole,

tTE = 0

Hence translation being epipole in second image is the left nullspace of essential matrix.
Thus from SVD if E = UDV T where U in term of column vetors be U = [u1, u2, u3]
then t = u3 or − u3 i.e., U = [u1, u2, t]

U

1 0 0
0 1 0
0 0 0

V T = [t]×R

The [t]× operation is converted in terms of U. This cross product result transformation
of arbitrary vector into the space perpendicular to t itself. For any vector a new
orientation is defined by space u1, u2 and t since U is orthogonal matrix. Hence any
vector is transformed into this space using UT and then we remove the t elements so
that vector will remain perpendicular to the t. Then we rotate by 90 degree in the
space of u1 and u2, which is finally transformed back to original space using U matrix.
Therefore,

U

1 0 0
0 1 0
0 0 0

V T =

(
U

 0 1 0
−1 0 0
0 0 0

UT

)
R

Using SVD for rotation matrix R we have,

U

1 0 0
0 1 0
0 0 0

V T =

(
U

 0 1 0
−1 0 0
0 0 0

UT

)
(UWV T )

or, U

1 0 0
0 1 0
0 0 0

V T = U

 0 1 0
−1 0 0
0 0 0

WV T

3



or,

1 0 0
0 1 0
0 0 0

 =

 0 1 0
−1 0 0
0 0 0

W

Hence possible solutions for W are

or,W =

0 −1 0
1 0 0
0 0 1

 or

 0 1 0
−1 0 0
0 0 0

 =

0 −1 0
1 0 0
0 0 1

T

Therefore, we have

R = U

0 −1 0
1 0 0
0 0 1

V T or R = U

0 −1 0
1 0 0
0 0 1

T

V T

So there are four possible results of the decomposition as

R = UWV T t = u3

R = UW TV T t = u3

R = UWV T t = −u3

R = UW TV T t = −u3

If det(R) = -1 then t = -t and R = -R. Here we have four configuration of cameras.
This ambiguity is removed by carrying out the triangulation using computed pose and
the configuration which gives point in front of camera is the optimal choice.

r3(X − t) > 0

This is called cheirality condition. Like this we are able to compute pose of camera
from 2D correspondence using the concept of epipolar geometry and essential matrix.

3 TRIANGULATION

Given 2D-2D corresponding point between two images of same scene and relative po-
sition of second camera with respect to the first one, 3D coordinate of that point can
be calculated. This is known as Triangulation.
Suppose points x1 and x2 represent same 3D point X in two images captured by two
different camera having relative rotation and translation represented by matrix R and
t
Let

P1 = K1[I3∗3|03]

then
P2 = K2[R3∗3|t3∗1]

4



From projective transformation we have,

λ

[
x1

1

]
= P1

[
X
1

]
(3.1)

and,

λ

[
x2

1

]
= P2

[
X
1

]
(3.2)

Taking cross product on both sides we have,[
x1

1

]
× P1

[
X
1

]
= 0 and

[
x2

1

]
× P2

[
X
1

]
= 0

Combining above equations we have,
[
x1

1

]
× P1[

x2

1

]
× P2

[X1
]
= 0 (3.3)

Equation 3.3 is in the form of
Ax = 0

This equation is least square problem. This can be simply solved by the use of technique
known as Singular Value Decompostion

4 POSE FROM 2D-3D CORRESPONDENCE(LINEAR

PNP)

Given the corresponding 2D-3D correspondence the pose of camera can be estimated.
This method is simple form of perspective n point algorithm also known as Linear
PnP. For 3D points in world coordinate system obtained after triangulation if we have
corresponding 2D keypoints in image present in the camera coordinate system, then
using this relation between 2D and 3D points and the concept of camera projection we
are able to estimate the pose of the camera in the world coordinate system.

Let xi→ Xi be the 2d-3D corresponding points and P1 = K1[I3∗3|03] be the projection
matrix of the camera. Then from projective transformation we have,

λ

[
x
1

]
= P

[
X
1

]
Taking cross on both sides we have,[

x
1

]
× P

[
X
1

]
= 0

5



or,

uv
1

×
P1

P2

P3

 X̃ = 0

where X̃ is the 3D homogeneous point in four dimension. and P1, P2, P3 are the 3 rows
of projection matrix respectively.

or,

uv
1

×
P1X̃

P2X̃

P3X̃

 = 0

or,

 0 −1 v
1 0 −u
−v u 0

P1X̃

P2X̃

P3X̃

 = 0

or,

 0 −1 v
1 0 −u
−v u 0


3×3

 X̃T 01×4 01×4

01×4 X̃T 01×4

01×4 01×4 X̃T


3×12

P T
1

P T
2

P T
3


12×1

= 0

or,

 0 −X̃T vX̃T

X̃T 0 −uX̃T

−vX̃T uX̃T 0


3×12

P T
1

P T
2

P T
3


12×1

= 0 (4.1)

This equation takes form of least square problem as Ax = 0 which is solved using
Singular Value Decomposition . Each correspondence gives 2 constraints therefore
to compute 12 unknown we require at least 6 point correspondence. Hence we have
computed the elements of projection matrix. Now we need to extract the Rotation and
Translation from the Projection matrix given the camera matrix K.
We know,

P = K[R |t]

or,K−1P = [R |t]

Hence
R = K−1P1:3 and t = K−1P4

Since R must be orthogonal matrix with determinant 1 it must be cleaned up and
translation vector must be scaled.

R = UDV T Using SVD

Rc = UV T , tc = t/D1,1 ifdet(UV T ) = 1

Rc = −UV T , tc = −t/D1,1 ifdet(UV T ) = −1

Like this we can estimate the pose of camera given 2D-3D point correspondence.
RANSAC algorithm is used to reject the outliers and compute accurate pose of the
camera.

Given the camera matrix we can first normalise the 2D points and directly compute
the RT matrix.

6



5 THIRD PERSON (WORLD) PERSPECTIVE

The camera center in world coordinates is denoted as {C} and the world coordinate
system as {W}. The transformations are given by:

C = −R−1t

R−1 = RT (since R is an orthogonal matrix)

P = K[R|t]
= K[R| −RC]

= KR
[
I3×3| − C

]
where P is the camera projection matrix, R is the rotation matrix, t is the translation
vector, K is the camera intrinsic matrix, and C is the camera center seen from the
world coordinate system.

6 BUNDLE ADJUSTMENT

6.1 Jacobian Matrix

The Jacobian matrix J is defined as:

J =
[
∂f(R(q),C,X)

∂R
∗ ∂R

∂q
∂f(R(q),C,X)

∂C
∂f(R(q),C,X)

∂X

]
where the function f(R(q), C,X) is given by:

f(R(q), C,X) =

[
u/w
v/w

]
where

u = [fxr11 + oxr31, fxr12 + oxr32, fxr13 + oxr33][X − C]

v = [fyr21 + oyr21, fyr22 + oyr22, fyr23 + oyr23][X − C]

w = [r31, r32, r33][X − C]

Here, K =

fx 0 ox
0 fy oy
0 0 1



6.2 Jacobian w.r.t. 3D point (X)

The partial derivative of f(R(q), C,X) with respect to X is:

∂f(R(q), C,X)

∂X
=

[
w ∂u

∂X
−u ∂w

∂X

w2

w ∂v
∂X

−v ∂w
∂X

w2

]

7



where
∂u

∂X
= [fxr11 + oxr31, fxr12 + oxr32, fxr13 + oxr33]

∂v

∂X
= [fyr21 + oyr31, fyr22 + oyr32, fyr23 + oyr33]

∂w

∂X
= [r31, r32, r33]

6.3 Jacobian w.r.t. camera center (C)

The partial derivative of f(R(q), C,X) with respect to C is:

∂f(R(q), C,X)

∂C
=

[
w ∂u

∂C
−u ∂w

∂C

w2

w ∂v
∂C

−v ∂w
∂C

w2

]

where
∂u

∂C
= −[fxr11 + oxr31, fxr12 + oxr32, fxr13 + oxr33]

∂v

∂C
= −[fyr21 + oyr31, fyr22 + oyr32, fyr23 + oyr33]

∂w

∂C
= −[r31, r32, r33]

6.4 Jacobian w.r.t. Rotation matrix (R)

The partial derivative of f(R(q), C,X) with respect to R is:

∂f(R(q), C,X)

∂R
=

[
w ∂u

∂R
−u ∂w

∂R

w2

w ∂v
∂R

−v ∂w
∂R

w2

]

where
∂u

∂R
= [fx(X1 − C1), 01x3, ox(X3 − C3)]

∂v

∂R
= [01x3, fy(X1 − C1), oy(X3 − C3)]

∂w

∂R
= [01x3, 01x3, (X3 − C3)]

8



6.5 Rotation Matrix in terms of Quaternion

The rotation matrix R in terms of the quaternion q = [qx, qy, qz, qw]
T is:

R =

1− 2q2y − 2q2z −2qwqz + 2qxqy 2qwqy + 2qxqz
2qxqy + 2qwqz 1− 2q2x − 2q2z −2qwqx + 2qyqz
2qxqz − 2qwqy 2qyqz + 2qwqx 1− 2q2x − 2q2y


The partial derivatives of R with respect to quaternion q are represented as follows:

∂R

∂q
=


∂R11

∂q
∂R12

∂q
∂R13

∂q
∂R21

∂q
∂R22

∂q
∂R23

∂q
∂R31

∂q
∂R32

∂q
∂R33

∂q


where

∂R11

∂q
=
[
0 −4qy −4qz 0

]
∂R12

∂q
=
[
2qy 2qx −2qw −2qz

]
∂R13

∂q
=
[
2qz 2qw 2qx 2qy

]
∂R21

∂q
=
[
2qy 2qx 2qw 2qz

]
∂R22

∂q
=
[
−4qx 0 −4qz 0

]
∂R23

∂q
=
[
−2qw 2qx 2qy 2qz

]
∂R31

∂q
=
[
2qz −2qw 2qx −2qy

]
∂R32

∂q
=
[
2qw 2qz 2qy 2qx

] ∂R33

∂q
=
[
−4qx −4qy 0 0

]

6.6 Gauss Newton Method

The update step ∆x is given by the equation:

∆x = (JTJ)−1JT (b− f(x))

Main computational bottleneck is the inverse of Hessian

9



6.7 Sparse Bundle Adjustment

Figure 6.1: Splitting of jacobian matrix

We first split Jacobian matrix into A and B which are derivative with respect to camera
parameters and 3d points respectively. as shown in Figure 6.1

Figure 6.2: Splitting of hessian matrix

Then we compute following section of hessian matrix as shown in 6.2

10



Uj =
∑
i

AT
ijAij

Vi =
∑
j

BT
ijBij

ϵaj =
∑
i

AT
ijϵij

ϵbj =
∑
j

BT
ijϵij

Wij = AT
ijBij

Yij = W T
ijV

−1
i

Then we compute,

Sjk = −
∑
i

YijW
T
ij + Ujδjk

S∆xc = ej : Reduced system

where, ej = eaj −
∑
i

Yijebi

∆xp = V −1
i (ebi −

∑
j

W T
ij∆xc) : Back substitution

So we have updates ∆xc and ∆xp for our camera parameters and 3D points.

11


	Estimation of Essential Matrix
	RANSAC Algorithm for Essential matrix estimation

	Decomposition of Essential Matrix
	Triangulation
	Pose from 2D-3D Correspondence(Linear PnP)
	Third person (world) perspective
	Bundle Adjustment
	Jacobian Matrix
	Jacobian w.r.t. 3D point (X)
	Jacobian w.r.t. camera center (C)
	Jacobian w.r.t. Rotation matrix (R)
	Rotation Matrix in terms of Quaternion
	Gauss Newton Method
	Sparse Bundle Adjustment


