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Abstract

With the limited availability of labeled data with var-

ious atmospheric conditions in remote sensing images, it

seems useful to work with self-supervised algorithms. Few

pretext based algorithms including from rotation, spatial

context and jigsaw puzzles are not appropriate for satel-

lite images [8]. Often, satellite images have a higher

temporal frequency. So, the temporal dimension of re-

mote sensing data provides natural augmentation with-

out requiring us to create articial augmentation of im-

ages. Here, we propose S3-TSS, a novel method of self-

supervised learning technique that leverages natural aug-

mentation occurring in temporal dimension. We com-

pare our results with current state-of-the-art methods and

also perform various experiments. We observed that our

method was able to perform better than baseline SeCo

[7] in four downstream datasets. Code for our work can

be found here: https://github.com/hewanshrestha/Why-Self-

Supervision-in-Time

1. Introduction

In recent years, machine learning has made remarkable

advances, fueled by a wide range of learning paradigms.

The evolution of machine learning has led us to deep learn-

ing. With the help of deep learning, we were able to unfold

the mystery behind the applications like image classica-

tion, object segmentation, semantic segmentation and many

more. Among the learning methods, the core methods that

support the development of articial intelligence include su-

pervised, unsupervised, and self-supervised learning. To

forecast outcomes and make wise judgments, supervised

learning involves using labeled data to train machine learn-

ing models. Contrarily, unsupervised learning concentrates

on nding underlying structures, relationships, and patterns

in unlabeled data, frequently yielding insights that would be

difcult to come across otherwise. Self-supervised learn-

ing, a new paradigm, has drawn a lot of interest since it

takes advantage of algorithms’ intrinsic capacity to produce

supervisory signals from unlabeled data.

The effectiveness of Deep Learning techniques is highly

dependent on the quantity and precision of training data. A

signicant dataset requires challenging work, a lot of time

and money, and there is a chance that human error will oc-

cur. Numerous elds, including medicine, satellite imaging,

and surveillance lm, have access to vast amounts of unla-

beled data. Self-supervised learning strategies seek to use

these underutilized resources for training in order to solve

this.

Satellite images undergo natural transformations over

time, including stationary alterations such as lightning, so-

lar radiation, weather conditions, and day-night transitions,

inuenced by factors like fog and clouds. These images also

capture stationary elements like buildings and trees, subject

to seasonal changes. Moreover, non-stationary modica-

tions involve dynamic elements such as moving cars and

ongoing construction activities. The complexity of these

changes dees replication through articial augmentation

techniques. In our work, we endeavor to explore the

potential of harnessing the inherent Natural Augmenta-

tion occurring within satellite images over time through

a self-supervised learning approach.

2. Related Work

There has been several works done in accordance with

self-supervised learning. In particularly, some studies have

been done upon remote sensing data with the help of self-



supervised models. In one of those paper [11], the re-

searchers proposed a multi-task framework to simultane-

ously learn from rotation pretext and scene classication to

distill task-specic features adopting a semi-supervised per-

spective. For applications like change detection or crop type

classication, the temporal stamps of remote sensing data

are crucial. Four different types of datasets have been used

to classify remote sensing scenes. In their proposed frame-

work, they have achieved learning of different discrimina-

tive features without any overheard parameters.

In case of satellite images, some traditional changes take

place depending on the time. It becomes harder to detect

and annotate these changes manually. To nd a solution,

Dong et al. [3] proposed a self-supervised representation

learning technique for change detection in distant sensing

after quantifying temporal context by coherence in time. In

this study, their proposed algorithm can be able to transform

images from two satellites into getting more precise repre-

sentation of a feature without any additional overheads with

the help of self-supervision.

Mañas et al. [7] proposed Seasonal Contrast (SeCo) ap-

proach which involves compiling large datasets of unla-

beled, uncurated satellite photos and using a self-supervised

learning technique for pre-training remote sensing represen-

tations. The researchers on this paper have discovered the

natural augmentations that took place on the satellite images

in the SeCo dataset.

On another paper [8], empirical results show that models

trained with SeCo dataset outperform ImageNet pre-trained

models and state-of-the-art self-supervised learning meth-

ods on various tasks. This motivates us more to include the

SeCo dataset into our proposed methods.

3. Method

3.1. Model Training Architecture

In this section, we present our methodology for self-

supervised learning of satellite images. Our method, called

S3-TSS: Self-Supervision in Time for Satellite Images, is

inspired by DINO [1], a state-of-the-art self-supervised

learning method that uses vision transformers. DINO works

by training a student network to predict the output of a

teacher network, which is updated with a momentum en-

coder. The student and teacher networks are trained with

a cross-entropy loss, without any contrastive or clustering

terms. Global and local crops are different image patches

that are used as inputs for the student and teacher networks

in DINO. Global crops have a resolution of 224 x 224 pix-

els and are randomly resized and cropped from the original

image. Local crops have a resolution of 96 x 96 pixels and

are randomly resized and cropped from a smaller region of

the original image. The global and local crops are used to

create different views of the same image, which are then

aligned by the cross-entropy loss between the student and

teacher outputs. This way, DINO can learn to extract fea-

tures that are invariant to different scales and regions of the

image.

In our work, we limited our studies to the ResNet-18 [5]

architecture as a backbone. Instead of using articial aug-

mentations, we used time as a natural augmentation. For

one particular geolocation, we had ve images in time. We

then randomly generated 30 local crops and 10 global crops

from these ve images. We followed the same cropping

ratio of 224 x 224 pixels for global crops and 96 x 96 pix-

els for local crops as presented in the DINO paper. Our goal

was to learn a student model that was better than the teacher

model and hence more numbers and difcult augmenta-

tions, in this case, crops, were given as input to the student

model and global crops acted as input to the teacher model.

As mentioned earlier, we used ResNet-18 as a backbone fol-

lowed by an MLP-based projection head. This MLP took

input of 512 features from the backbone and was followed

by 3 layers with 512, 64, and 2048 neurons in each. In the

teacher’s head, an extra centering operation was performed

before softmax, which helped in preventing collapse of the

model. The weights of the teacher model while training

were updated by exponential moving average from the stu-

dent model. This also helped in avoiding collapse. The

overview of the method is shown in diagram 1. After train-

ing the model, we discarded the projection head and used

the teacher model backbone on downstream tasks which are

described in the following sections.

3.2. Pre-training Dataset for Self-Supervised
Learning

For self-supervised learning algorithms, we use some

pretraining and test on downstream tasks of interest. In

our project, we have used the Seasonal Contrast (SeCo)

dataset [7] for our pre-training task. The SeCo dataset is

a remote sensing dataset created from Sentinel-2 [4] tiles

without manual human annotation. SeCo dataset has a to-

tal of 100,000 images with each image having 5 different

seasonal variants in time.

3.3. Datasets for Downstream Tasks of Interest

For our downstream tasks of interest, we have used four

different remote sensing datasets namely: EuroSAT Dataset

[6], Aerial Image Dataset(AID) [9], UCMerced Land Use

Dataset [10] and WHU-RS19 Dataset [2].

3.3.1 EuroSAT Dataset

EuroSAT dataset is a remote sensing dataset that covers 13

spectral bands and consists of a total of 27000 labeled and

geo-referenced images into ten different classes: Annual-

Crop, Forest, HerbaceousVegetation, Highway, Industrial,



Figure 1. Overview of S3-TSS: Self-Supervision in time for Satellite Images.

Pasture, PermanentCrop, Residential, River, and SeaLake.

3.3.2 Aerial Image Dataset (AID)

AID is a large-scale aerial image dataset, which is made

up of 10000 images distributed into the following 30 aerial

scene types: airport, bare land, baseball eld, beach, bridge,

center, church, commercial, dense residential, desert, farm-

land, forest, industrial, meadow, medium residential, moun-

tain, park, parking, playground, pond, port, railway sta-

tion, resort, river, school, sparse residential, square, sta-

dium, storage tanks, and viaduct.

3.3.3 UCMerced Land Use Dataset

The UCMerced Land Use Dataset contains 100 images for

each of the following 21 classes: agricultural, airplane,

baseball diamond, beach, buildings, chaparral, dense res-

idential, forest, freeway, golf course, harbor, intersection,

medium residential, mobile homepark, overpass, parking

lot, river, runway, sparse residential, storage tanks, and ten-

nis court. Each image in this dataset measures 256x256 pix-

els.

3.3.4 WHU-RS19 Dataset

WHU-RS19 Dataset is a set of satellite images that provides

high-resolution remote sensing images up to 50cm. There

are a total of 19 classes of scenes, including airport, beach,

bridge, commercial, desert, farmland, football eld, forest,

industrial, meadow, mountain, park, parking, pond, port,

railway station, residential, river, and viaduct, with about

50 samples of high-resolution imagery in each class.

3.4. Training hyperparameters and evaluation met-
ric

To ensure an equitable comparison of the results ob-

tained through the S3-TSS approach with those generated

Pre-training Downstream

Dataset

Hyperparameters Metric

Random

Initialization
EuroSAT Optimizer: Adam

ImageNet

Initialization
AID Learning Rate:

0.001

Linear-

probing

SeCo

Initialization
UCMerced

Land Use

Epochs: 20 Fine-tuning

S3-TSS [Ours]
WHU-RS19 Batch size: 64

DINO with

articial

augmentation

StepLR scheduler

Table 1. Hyperparameter selection

by alternative methods, we maintained consistency in all

hyperparameters. The specic hyperparameter settings uti-

lized during the training of the ResNet-18 model for the

downstream task are elucidated in Table 1. Furthermore, to

validate the applicability of our approach across diverse sce-

narios, we assessed its performance across the four datasets

previously described. Notably, for the sake of conducting a

comparative evaluation, adjustments were exclusively made

to the pretrained model weights and the model’s initializa-

tion procedure. We used Linear probing and netuning as

metric. Linear probing assesses the quality of learned rep-

resentations by training a linear classier on xed features,

while ne-tuning adapts the entire model to a downstream

task, reecting the transferability of acquired features.



4. Experimental Results and Analysis

4.1. Experiment 1

We conducted a series of four experiments to address the

overarching inquiry: Can Natural Augmentation yield su-

perior performance compared to Articial Augmentations?

Experiment 1 encompassed a self-supervised framework

comprising two primary stages. The initial phase involved

training a backbone model with a pretext task, utilizing ei-

ther absent or fabricated labels. Subsequently, in the sec-

ond phase, the identical backbone model was employed for

supervised training. Given the challenge of establishing a

suitable termination criterion in the absence of labels dur-

ing the initial step, Experiment 1 was dedicated to elucidat-

ing and solidifying the termination criteria for our proposed

approach. Specically, a subset of 20,000 images was ex-

tracted from a pool of 100,000 images in the SeCo dataset.

Employing the DINO method, the model was trained over

30 and 100 epochs, noteworthy is the utilization of articial

augmentations for this stage. Post-training, the backbone

model was further ne-tuned across four distinct datasets,

with variations introduced in terms of the proportion of data

subjected to supervised learning. As illustrated in Figure

2, the outcomes pertaining to the EuroSat dataset are pre-

sented; comprehensive outcomes for the remaining datasets

are accessible via the provided link. Discerning from Fig-

ures ?? and ??, it can be inferred that an extended number

of training epochs yields enhanced performance. This as-

sertion is supported by the observation that the green curve,

representing the model trained over 100 epochs, consis-

tently outperforms its counterparts. Intriguingly, the linear

probing results indicated that the DINO-initialized model

in both training congurations surpassed the performance

of models initialized with ImageNet pretraining. Guided by

these ndings, subsequent experiments will adopt the crite-

rion of 100 epochs as the established termination point.

4.2. Experiment 2

Experiment 2 was undertaken with the principal aim of

comprehending the nuanced impact of the quantity of unsu-

pervised data deployed during the pretraining phase. This

investigation unfolded across two distinct scenarios: one in-

volving a dataset of 20,000 images and the other comprising

100,000 images. All other experimental parameters were

held constant, paralleling the conditions established in Ex-

periment 1. The ndings gleaned from Figure 3 substantiate

that the red curve, corresponding to the model pretrained on

the larger corpus of 100,000 SeCo dataset images, emerges

as the dominant performer. Particularly noteworthy is the

outcome of linear probing illustrated in Figure ??, where

the model’s performance outpaces ImageNet by a substan-

tial margin. Additionally, the performance parity observed

in the ne-tuning context depicted in Figure ??, despite Im-

ageNet’s signicantly larger pool of 1 million images com-

pared to SeCo’s 100,000, is a notable observation. Guided

by these insights, forthcoming experiments shall adopt the

100,000-image conguration for the pretraining phase. Re-

sults for the remaining datasets are accessible via the pro-

vided link.

4.3. Experiment 3

In the context of Experiment 3, we introduced our

Self-Supervision in Time for Satellite Images (S3-TSS)

methodology, designed to facilitate a comparative assess-

ment against the current state-of-the-art SeCO approach as

expounded in reference [7], as well as DINO when em-

ployed in conjunction with articial augmentations. The

procedural intricacies of the S3-TSS pretraining method are

elaborated upon within the methodology section. The out-

comes of Experiment 3 are presented through Figure 4, fo-

cusing on the EuroSAT dataset. Specically, within Figure

??, the purplish curve signies the outcomes derived from

the S3-TSS approach. The observations therein demon-

strate the comparable performance of natural augmentation

in S3-TSS, exhibiting results on par with the articial aug-

mentation strategies adopted in both DINO and SeCo. Sub-

sequently, in Figure 4, S3-TSS exhibits superior perfor-

mance compared to the SeCo initialization. Notably, the

adoption of natural augmentation within S3-TSS confers

the advantage of temporal efciency, as it obviates the need

for resource-intensive articial augmentation endeavors. It

is prudent to acknowledge that while DINO, in tandem with

articial augmentations, achieves a performance edge over

S3-TSS, this does come at the expense of heightened com-

putational demands. Results for the remaining datasets are

accessible via the provided link.

5. Conclusion

The empirical investigations undertaken in this study

provide valuable insights into the dynamics of self-

supervised learning methodologies, particularly with re-

spect to training duration, dataset scale, and the efcacy of

a novel approach termed S3-TSS. The subsequent analysis

yields noteworthy observations in the context of ne-tuning

and linear-probing evaluations.

• Experiment 1: Empirical evidence substantiates the

notion that the augmentation of self-supervised train-

ing epochs correlates positively with enhanced model

performance.

• Experiment 2: The discernment of the pivotal role

played by the quantity of data utilized for self-

supervised learning underscores the signicance of

transitioning from a 20,000-image dataset to a more

expansive pool of 100,000 images, resulting in consid-

erable performance gains.



Figure 2. Fine-tuning and linear-probing results for Experiment 1

Figure 3. Fine-tuning and linear-probing results for Experiment 2

Figure 4. Fine-tuning and linear-probing results for Experiment 3

• Experiment 3: The introduction of the SeSelf-

Supervision in Time for Satellite Images (S3-TSS)

method yields commendable results, surpassing the

SeCo baseline without resorting to articial augmen-

tation. However, it is noteworthy that the DINO self-

supervised learning (SSL) approach, coupled with ar-

ticial augmentation, demonstrates superior perfor-

mance albeit at a heightened computational cost.

• Fine-tuning Analysis: The trend consistently ob-

served across various datasets indicates that, in ne-

tuning scenarios, models initialized with ImageNet

consistently outperform other initialization methods.

It is pertinent to acknowledge that the notable per-

formance discrepancy is inuenced by the signicant

dataset scale disparity, with ImageNet comprising 1

million images in contrast to the study’s dataset en-

compassing 100,000 images.

• Linear-Probing Evaluation: Both the S3-TSS and

DINO initializations outshine the performance of mod-

els initialized with ImageNet across the linear-probing

evaluation, further highlighting the efcacy of these

methods in capturing salient feature representations.

We also performed some more experiments with

ResNet-50 Architecture, please refer to this link.
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