

High Level Computer Vision Summer Semester 2023 S3-TSS: Self-Supervision in time for Satellite Images

A novel method of SSL technique in Satellite images Akansh Maurya (7047939) Hewan Shrestha (7047533) Mohammad Munem Shahriar (7002640)

Content

- Supervised vs Unsupervised vs Self-supervision
- General Framework of Self-supervision learning
- Motivation: Problem of existing methods in SSL for satellite images
- Self-supervision in time
- Experiments and results
- Comparison with related work
- Conclusion
- Extension

Supervised vs Unsupervised vs Self-supervision

Supervised Learning

- Labelled Dataset
- Train on labelled data to predict or classify
- Ex. Classification, Regression

Unsupervised Learning

- Unlabelled Dataset
- Train on unlabelled data to find a pattern or structure
- Ex. Clustering, KNN

Self-supervised Learning

- Unlabelled Dataset
- Train on unlabelled data to label itself
- Ex. Pretext Task

Images:

https://openaccess.thecvf.com /content_cvpr_2018/papers/No roozi_Boosting_Self-Supervised _Learning_CVPR_2018_paper.p df

- The performance of Deep Learning methods is very sensitive to the size and quality of training data.
- Annotating a large dataset has its own challenges:
 - Laborious
 - Time Consuming
 - Expensive
 - Prone to human error
- For many application there exist a enormous amount of unlabelled data. Eg. Medical images like Chest X-rays captured on daily basis, satellite images, camera recording etc.
- Self-supervised learning methods aims to utilize the data.

General Framework of Self-supervision learning

Self Supervised Learning Framework

Pretext Task: Predict Rotations

Pretext Task: Image Coloring

Grayscale image: L channel $\mathbf{X} \in \mathbb{R}^{H \times W \times 1}$

L

Concatenate (*L*,*ab*) channels $(\mathbf{X}, \widehat{\mathbf{Y}})$

→ ab

Pretext Task: Inpaiting (Predicting Missing Pixels)

Contrastive Representation Learning

Example of pre-text task and methods

Source: High Level Computer Vision | Bernt Schiele

Problem with existing SSL methods for Satellite Images

Performance of Self Supervised methods is majorly depended on:

- Choice of Augmentations
- Methods: Contrastive(MoCo, SimCLR), BYOL, DINO etc.

$\textbf{Conclusion} \rightarrow$

- Better augmentations are needed for satellite images.
- They are very different from natural images.

Self-Supervision in time

Time stamp(Days): 1

Time stamp(Days): 2

Time stamp(Days): 3

Time stamp(Days): 4

Bauhaus, Saarbrücken, Germany

Over of period of time, satellite images goes through (Natural Augmentations):

- Stationary changes:
 - Lightning, solar radiation
 - Fogs, Clouds (Obstruction)
 - Buildings, trees are stationary
 - Weather Condition, seasons
 - Day-night
 - Etc.
- Non-Stationary Changes:
 - Movements of objects like cars
 - Construction activities
 - Etc.
- No Artificial Augmentation will able to replicate these changes.

Can we leverage the Natural Augmentation that happens with satellite images over time?

Images from Planet.com; data curated us.

Self-Supervision in time

Natural Augmentation in time

Images from SeCo Dataset: https://arxiv.org/abs/2103.16607

DINO: Self-Distillation with No Labels

Our Approach:

- Use State of the Art methods Self supervised method, discussed in Emerging Properties in DINO: Self-**Di**stillation with **No** Labels.
 - The advantage of this SSL method is that it does not require negative example,
- Instead of using Artificial Augmentation, we will be using Natural Augmentations.

DINO Architecture with Natural Augmentation Modification

lgorithm 1 DINO PyTorch pseudocode w/o multi-crop.
<pre>gs, gt: student and teacher networks C: center (K) tps, tpt: student and teacher temperatures 1, m: network and center momentum rates t.params = gs.params or x in loader: # load a minibatch x with n samples x1, x2 = augment(X, augment (X) # frandom views</pre>
<pre>s1, s2 = gs(x1), gs(x2) # student output n-by-K +1, +2 = gt(x1), gf(x2) # teacher output n-by-K loss = H(t1, s2)/2 + H(t2, s1)/2 loss.backward() # back-propagate</pre>
<pre># student, teacher and center updates update(gs) # SGD gt.params = 1+gt.params + (1-1)+gs.params C = m+C + (1-m)+cat([t1, t2]).mean(dim=0)</pre>
<pre>ef H(t, s): t = t.detach() # stop gradient s = softmax(s / tps, dim=1)</pre>

 $t = softmax((t - \hat{C}) / tpt, dim=1) # center + shar$ return - (t * log(s)).sum(dim=1).mean()

Overview of our method: Self-Supervision in time (S3-TSS)

Dataset Descriptions

EuroSAT

Total Samples	27000
Number of Classes	10

AID(Aerial Image Dataset)

Total Samples	5786
Number of Classes	18

Source: https://zenodo.org/record/7711 810#.ZAm3k-zMKEA https://captain-whu.github.io/ AID/

Dataset Descriptions

UCMerced

Total Samples	2100
Number of Classes	21

WHU-RS19

Total Samples	950
Number of Classes	19

Source: http://weegee.vision.ucmerced. edu/datasets/landuse.html https://www.kaggle.com/datas ets/sunray2333/whurs191

Experiment Setup

- Architecture Used; Resnet-18, Resnet-50.
- Pre-training Dataset: Seasonal Contrast (SeCo)
- Downstream Tasks: Classification
- Downstream Datasets: EuroSAT, AID, UCMerced, WHU-RS19
- Optimizer and Learning rate and majorly all the hyperparameters are constant for all the experiments unless stated.
- Metric:
 - Linear Probing
 - Fine-tuning

- Main Question: Can Natural Augmentation perform better than Artificial Augmentation?

- Architecture: ResNet18
- Dataset: SeCo-20k(out of 100k)
- Epochs: 30 and 100
- Downstream Datasets: EuroSaT, AID, UCMerced, WHU-RS19
- Metric: Fine-tuning and Linear-probe

0.01 62.518519 84.296296 77.296296 72.296296 0

Percentage Random_initialization Imagenetv1 Dino_100_epochs(20k) Dino_30_epochs(20k)

0	0.01	62.518519	84.296296	77.296296	72.296296	0	0.01	
1	0.02	68.666667	88.000000	84.555556	76.555556	1	0.02	4
2	0.05	74.296296	93.185185	89.296296	82.074074	2	0.05	
3	0.10	80.851852	94.629630	91.888889	84.074074	3	0.10	3
4	0.20	85.44444	96.000000	93.888889	88.703704	4	0.20	1
5	0.50	93.185185	96.962963	95.703704	93.037037	5	0.50	-
6	1.00	95.962963	97.44444	96.518519	95.074074	6	1.00	1

Percentage Random_initialization Imagenetv1 Dino_100_epochs(20k) Dino_30_epochs(20k)

0 0.01 36.296296 63.000000 96.296296 94.9 1 0.02 44.555556 72.851852 96.296296 94.9 2 0.05 49.814815 80.370370 96.44444 95.13	
1 0.02 44.55556 72.851852 96.296296 94.9 2 0.05 49.814815 80.370370 96.44444 95.12	62963
2 0.05 49.814815 80.370370 96.44444 95.1	62963
	85185
3 0.10 53.407407 82.407407 96.44444 95.0	37037
4 0.20 56.44444 84.370370 96.44444 95.2	59259
5 0.50 58.740741 86.296296 96.407407 95.1	48148
6 1.00 61.185185 86.851852 96.407407 95.1	48148

AID Dataset

WHU-RS19 Dataset

- Architecture: ResNet18 .
- Dataset: SeCo-100k
- Epochs: 100
- Downstream Datasets: EuroSaT, AID, UCMerced, WHU-RS19
- Metric: Fine-tuning and Linear-probe •

Percentage	Random_initialization	Imagenetv1	Dino_100_epochs(20k)	Dino_100_epochs(100k)		Percentage	Random_initialization	Imagenetv1	Dino_100_epochs(20k)	Dino_100_epochs(100k)
0.01	62.518519	84.296296	77.296296	83.962963	0	0.01	36.296296	63.000000	96.296296	96.925926
0.02	68.666667	88.000000	84.555556	90.296296	1	0.02	44.555556	72.851852	96.296296	96.925926
0.05	74.296296	93.185185	89.296296	93.296296	2	0.05	49.814815	80.370370	96.444444	97.000000
0.10	80.851852	94.629630	91.888889	94.740741	3	0.10	53.407407	82.407407	96.444444	97.074074
0.20	85.44444	96.000000	93.888889	95.851852	4	0.20	56.444444	84.370370	96.444444	96.925926
0.50	93.185185	96.962963	95.703704	96.703704	5	0.50	58.740741	86.296296	96.407407	96.925926
1.00	95.962963	97.444444	96.518519	96.962963	6	1.00	61.185185	86.851852	96.407407	97.000000

D	0.01	62.518519	84.296296	77.296296	83.962963
ı	0.02	68,666667	88.000000	84.555556	90,296296

3

5

1.0

---- Bandom Initialization (BesNet18)

0.8

Imagenetv1 Initialization (ResNet18)

Dino Initialization (ResNet18) [20k100e]
 Dino Initialization (ResNet18) [100k100e]

1.0

Accuracy vs. Percentage of the dataset used(Fine-tuning[UHU-RS19]

0.4 0.6 Percentage of the dataset used

0.0

0.2

WHU-RS19 Dataset

Seasonal Contrast (Baseline)

Source: https://arxiv.org/abs/2103.16607

SeCo Baseline vs ImageNet

EuroSAT Dataset

SeCo Baseline on Other Datasets

UCMerced Dataset

WHU-RS19 Dataset

WHU-RS19 Dataset

Conclusion

- **Experiment 1**: Concluded that training a self-supervised model with more epochs is better.
- **Experiment 2**: Found that the amount of data for self-supervised learning is crucial; significant improvement observed when moving from 20k to 100k images.
- **Experiment 3**: Introduced S3-TSS, surpassing SeCo without using artificial augmentation, but DINO SSL with artificial augmentation performs better at the cost of computation power.
- **Fine-tuning**: Although we have seen this continued trend that in fine-tuning, for all the datasets, ImageNet initialization performs better as compared to other initialization. We should also note that ImageNet consists of 1 million images, in contrast to us having only 100k images.
- **Linear-Probing**: S3-TSS and DINO initialization achieve superior results compared to ImageNet initialization.

Extending to ResNet50

EuroSAT Dataset

Extending to ResNet50

WHU-RS19 Dataset

Extension of our work

- In our future work, we want to extend this work to ViT architectures.
- Also, we want to extend to SeCo-1M dataset.
- **Example Application of our work**: Same Road in different weather. Self-driving car models can be trained with this plethora of data with this method.

Method	Arch.	Param.	im/s	Linear	k-NN
Supervised	RN50	23	1237	79.3	79.3
SCLR [12]	RN50	23	1237	69.1	60.7
MoCov2 [15]	RN50	23	1237	71.1	61.9
InfoMin [67]	RN50	23	1237	73.0	65.3
BarlowT [81]	RN50	23	1237	73.2	66.0
OBoW [27]	RN50	23	1237	73.8	61.9
BYOL [30]	RN50	23	1237	74.4	64.8
DCv2 [10]	RN50	23	1237	75.2	67.1
SwAV [10]	RN50	23	1237	75.3	65.7
DINO	RN50	23	1237	75.3	67.5
Supervised	ViT-S	21	1007	79.8	79.8
BYOL* [30]	ViT-S	21	1007	71.4	66.6
MoCov2* [15]	ViT-S	21	1007	72.7	64.4
SwAV* [10]	ViT-S	21	1007	73.5	66.3
DINO	ViT-S	21	1007	77.0	74.5

Clo

Thank You!

Appendix

Discussion of Related Work

- One research paper [1], proposed a multitask learning framework that introduces the combination of self-supervised learning and scene classification tasks.
- This study [2], proposed a self-supervised representation learning technique for change detection in distant sensing after quantifying temporal context by coherence in time.
- On this paper [3], the researchers approached a different effective pipeline named "Seasonal Contrast (SeCo)" which can compile large unlabeled datasets of satellite photos and use self-supervised learning technique for pre-training remote sensing representations.
- Researchers in another study review [4] discussed about latest self-supervised learning developments, mainly for remote sensing.

Content

- Supervised vs Unsupervised vs Self-supervision
- General Framework of Self-supervision learning
- Motivation: Problem of existing methods in SSL for satellite images
- Self-supervision in time
- Experiments and results
- Comparison with related work
- Conclusion
- Extension

References

- [1] Zhicheng Zhao, Ze Luo, Jian Li, Can Chen, and Yingchao Piao. When self-supervised learning meets scene classification: Remote sensing scene classification based on a multi-task learning framework. Remote Sensing, 12(20), 2020.
- [2] Huihui Dong, Wenping Ma, Yue Wu, Jun Zhang, and Licheng Jiao. Self-supervised representation learning for remote sensing image change detection based on temporal prediction. Remote Sensing, 12(11), 2020.
- [3] Oscar Ma nas, Alexandre Lacoste, Xavier Giro i Nieto, David Vazquez, and Pau Rodriguez. Seasonal contrast: Unsupervised pre-training from uncurated remote sensing data, 2021.
- [4] Yi Wang, Conrad M Albrecht, Nassim Ait Ali Braham, Lichao Mou, and Xiao Xiang Zhu. Self-supervised learning in remote sensing: A review, 2022.